Berapa Banyak Huruf Berbeda Yang Dapat Disusun Dari 1

Berapa banyak huruf berbeda yang dapat disusun dari 1 huruf A, 3 angka B, dan 4 angka C?
Selamat malam, sore dan siang kepada para pencari ilmu sekalian. bertemu lagi dengan saya prof.Mapasbsas. Pada waktu kali ini saya akan membahas seputar persoalan mata pembelajaran Matematika dengan persoalan diatas yang pastinya sedikit sulit.
Banyak dari sahabat para pelajar SMA yang mesti menuntaskan sebuah soal yang berbeda dari contoh yang di berikan. Melelahkan bukan? Sehingga kita yakin dikala sahabat berada laman ini sahabat sudah merasa menyerah dengan jawaban yang anda cari.
Tidak perlu berbasa basi lagi, mari kita langsung bahas soal Matematika ini dengan penyelesaian yang gampang sahabat fahami .

Jawaban Berapa Banyak Huruf Berbeda Yang Dapat Disusun Dari 1.. adalah

Jawaban yang benar adalah 280

Asumsi soal : Berapa banyak kata berbeda yang dapat disusun dari 1 huruf A, 3 huruf B, dan 4 huruf C?

Permutasi dengan unsur yang sama :
P = n!/k!l!m!
n : banyak semua unsur
k : banyak unsur pertama
l : banyak unsur kedua
m : banyak unsur ketiga

Diketahui :
Ada 8 huruf : 1 huruf A, 3 huruf B, dan 4 huruf C
n = 8
k = 1
l = 3
m = 4
Banyak susunan yang dapat diperoleh :
P = n!/k!l!m!
= 8!/(1! 3! 4!)
= 8·7·6·5·4!/(1·3·2·1·4!)
= 8·7·6·5/6
= 8·7·5
= 280

Jadi banyaknya susunan huruf yang diperoleh adalah 280

Cukup sekian untuk penjelasan dari soal Berapa banyak huruf berbeda yang dapat disusun dari 1 huruf A, 3 angka B, dan 4 angka C?. sekedar kiat tips dari kita, Fahami perihal jawaban yang di berikan sehingga ketika guru Sobat bertanya, Sobat bisa menjelaskan soal Matematika tersebut secara lengkap.
Jangan lupa beri tahu sahabat anda tentang adanya website kami, supaya lebih banyak lagi para pelajar yang terbantu dengan jawaban yang saya berikan. Untuk mencari jawaban yang lain silahkan ketikkan soal yang anda cari di kolom percarian di atas.

Leave a Comment